Safelift ${ }^{\circ}$

Electric Wire Rope Hoist

1. HIGH RELIABLE BRAKING SYSTEM UNQUE TO SAFELIFT

- The hoist detects the amount of lining abrasion. The brake is equipped with as automatic adjusting device to apply brake torque in proportion to the amount of lining abrasion.
- The double braking system consists of the main brake and the auxiliary brake unit

2. HOISTING MOTOR WITH A THERMAL PROTECTOR

- The hoist motor automatically stops when sensing the heat of the motor coil in order to protect the motor from burning damage caused by heat due to overwork.

3. EFFICIENT MAINTENANCE IS POSSIBLE

- The starting time counter in the control box facilitates checking of the lifetime of consumable parts.
- The gear inspection window in the control box allows visual checks of the condition of the gear teeth surface and lubrication to some degree.
- The punch mark on the hook indicates the reference point fot the hook inspection of deformation.
- The inspection of the rope end is easy.

Motor unit

Each hoist is equipped with a motor, which provides optimal starting torque for the hoist. Employing cooling fans and large-capacity ball bearings, the class B insulating motor (class F for 7.5 and 10 tons) can withstand severe operating conditions. The hoisting motor is provide with a thermal protector, which sense the heat of the motor coil and functions to protect the motor from burning damage caused by over-frequent starting times.

- Control box Starting time counter

The cumulative number of starting times is indicated on this counter because the total number of times the parts have been operated is know on this counter it is useful for planning the maintenance and procurement of consumable part such as brake, electromagnetic switches and wire ropes.

Reduction gear unit

With a grease lubricating system, grease is filled in the gear unit on shipment, eliminating the replenishment prior to use and prolonging the operation time. The building blocks of the spur gears (helical $1^{\text {st }}$ stage) facilitate the maintenance inspection

Auxiliary brake unit

If the braking force of the main brake is reduced, the auxiliary brake unit, a new system with minimum impact, prevents the drop of the load. Together with the automatic brakes, it composes a double braking mechanism.

4. Safelift

This is an orthodox type of hoist widely utilized for general purposes.
It boasts high performance for use in rugged jobs such as general production in factories, mining, railroads and warehouses.

Technical Parameters

Capacity				1	2	3	5	5	7.5	10	15	20
Lifting height (m)				6/12	6/12	6/12	6/12	9/12	9/12	9/12	9/12	12
Hoisting	$\begin{aligned} & \text { Speed } \\ & (\mathrm{m} / \mathrm{min}) \end{aligned}$		50 Hz	11	8.4	7.5	7.5	6.7	6.0	5.0	5.0	4.2
			50 Hz	13	10	9	9	8	7.2	6.0	6.0	5.0
	Motor	(Kw)	60 Hz	1.9	2.9	4.2	4.2	5.9	7.9	8.8	6.7X2	7.5x2
			60 Hz	2.3	3.5	5	5	7	9.5	10.5	8X2	9×2
		No. of Poles		4	4	4	4	4	4	4	4	4
Traversing	$\begin{aligned} & \text { Speed } \\ & (\mathrm{m} / \mathrm{min}) \end{aligned}$		50 Hz	21	21	21	21	21	14	14	14	14
			50 Hz	25	25	25	25	25	17	17	17	17
	Motor	(Kw)	60 Hz	0.30	0.30	0.45	0.45	0.63	0.47×2	0.47 X 2	0.7×2	0.7x2
			60 Hz	0.36	0.36	0.55	0.55	0.75	0.56×2	0.56×2	0.84 X 2	0.84x2
		No. of Poles		4	4	4	4	4	6	6	4	4
Wire Rope	No. of falls			2	2	2	2	4	4	4	4	4
	Composition			6xFi(29)-B								6xFi(29)WRC-B
	Dia. (mm)			$\varnothing 8$	$\varnothing 11.2$	$\varnothing 14$	$\varnothing 14$	$\varnothing 12.5$	$\varnothing 14$	ø16	ø20	$ø 22.4$
Operating method				PUSH-BUTTON OPERATION								
Electric source (3 phase)				$200-600 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$								

1 T

2 T/3T

Size Specification

Capacity (t)		1						2					
Approx. dimensions (mm)	L	6000			12000			6000			12000		
	H	790			790			985			985		
	A	545			715			595			630		
	B	350			385			435			615		
	M	345			345			415			415		
	W	200/290			200/290			200/290			200/290		
	K	20			90			30			110		
	J	85			115			75			100		
	$\emptyset \mathrm{d}$	45			45			56			56		
	${ }_{\square} \mathrm{P}$	96			96			96			96		
	a	23			23			36			36		
Min. Curve rad		1.5			1.5			1.8			1.8		
Dimensions with respect to I-beam		E	F	S	T	U	C	E	F	S	T	U	C
200x100x7		255	374	42	148	47/42	135	220	378	42	148	42	135
$250 \times 125 \times 7.5$		255	387	67	151	44/39	185	220	391	67	151	39	185
$300 \times 150 \times 11.5$		255	400	92	160	35/30	225	220	404	92	160	30	225
$450 \times 175 \times 11$													
Approx. weight (Kg)		165			175			250			270		

Capacity (t)		3						5					
Approx. dimensions (mm)	L	6000			12000			8000			12000		
	H	1115			1115			1190			1190		
	A	645			690			845			955		
	B	475			660			690			800		
	M	460			460			230/310			455		
	W	230/310			230/310			/			230/310		
	K	35			120						1		
	J	80			110			90			1		
	ød	71			71						90		
	$ø \mathrm{P}$	128			128			58					
	a	42			42			3.0			58		
Min. curve radius (m)		2.0			2.0						3.0		
Dimensions with respect to I-beam		E	F	S	T	U	C	E	F	S	T	U	C
200x100x7													
$250 \times 125 \times 7.5$		245	417	52	177	38	180						
$300 \times 150 \times 11.5$		245	430	77	187	28	220	305	450	77	225	30	215
450x175×11		245	443	102	185	30	370	305	463	102	223	32	365
Approx. weight (Kg)		315			340			685			745		

